Molecular landscapes of human hippocampal immature neurons across lifespan
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Supplementary Fig. 1 | Integration and characteristics of human hippocampal scRNA-

seg/snRNA-seq datasets across the lifespan. a, UMAP visualization of cells from human

2



hippocampal scRNA-seq/snRNA-seq datasets across the lifespan upon integration using canonical
correlation analysis (CCA)*, colored by age (left) and cluster (right). The prenatal dataset was from
a published study** and all postnatal ones were generated in the current study. b, Expression patterns
of marker genes used to determine cluster identities. c, UMAP visualization of the integrated human
hippocampal dataset split by age (left column) and by specimen within each age group (right
column). GW: gestational week; yrs: years. See Fig. 1b and Extended Data Fig. 1b for plots for the
infant group (0-2 years). See Supplementary Table 1 for de-identified specimen information,
Supplementary Table 2 for sequencing characteristics, and Supplementary Table 3 for information

on the previously published datasets that were used.
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Supplementary Fig. 2 | scVI correction of hippocampal sScRNA-seq/snRNA-seq datasets across
ages for sequencing variation. a, Performance of the scV1 algorithm*®, a deep generative modeling
analytic method for correcting sScCRNA-seq/snRNA-seq data matrices for batch effect removal. Line
plot showing the likelihood change for the training error (blue) and the testing error (orange) across
the 100 epochs of training. b, UMAP visualization of cells from human hippocampal sScRNA-
seg/snRNA-seq datasets across ages after scVI correction and unsupervised clustering, colored by
age (left) and by cluster (right). ¢, Heatmap showing the overlap of cluster membership using the

dataset processed by scVI (y-axis) versus that aligned with canonical correlation analysis (x-axis,



CCA*). Colors indicate the fraction of total cells per CCA-aligned cluster per age group assigned to
each scVI cluster. Robust clustering was achieved post-scVI correction with excellent cluster
correspondence to the results from CCA, a state-of-the-art cell alignment tool, indicating effective
batch correction. d, Heatmap showing the expression of the housekeeping “stably-expressed
genes™3%%% in all cells across ages in the uncorrected raw dataset versus after the correction and

integration using the ‘SC Transform’ (built in Seurat®®) and the sc\VVI methods.
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Supplementary Fig. 3 | Common molecular signatures of human imGCs irrespective of age.
Gene ontology network of biological processes associated with the common human imGCs-enriched
genes across ages in comparison to mGCs, colored by FDR-adjusted p-value. Only significantly
enriched nodes are displayed (one-sided hypergeometric test, p(FDR) < 0.05). The node size
represents the term enrichment significance. Examples of the most significant terms per group are
shown. See Fig. 3b for a summary bar plot and Supplementary Table 6 for the list of GO terms.
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Supplementary Fig. 4 | Transcriptomic shifts in human imGCs across ages. a, Pseudo-age gene
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co-variation kinetics analysis in Monocle*! revealed five distinct age-dependent gene expression
patterns in human imGCs (likelihood ratio test, Benjamini-Hochberg-adjusted p-value < 0.01, g-
value < 0.01). b-f, Gene ontology network of biological processes associated with genes in each
pattern, colored by FDR-adjusted p-value. Only significantly enriched nodes are displayed (one-
sided hypergeometric test, p(FDR) < 0.05). The node size represents the term enrichment
significance. Examples of the most significant terms per group are shown. See Supplementary Table
8 for the lists of GO terms.
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Supplementary Fig. 5 | Interactions between human imGCs and different neighboring cell
types in the dentate gyrus across ages. Shown are Circos plot (a) and bar plot (b) displaying the
number of specific ligand-receptor interaction pairs between human imGCs and their neighboring
cell types in the dentate gyrus of the corresponding specimen across ages. Specificity of the
interactions was determined by a one-sided randomization test in CellPhoneDB*? and a p-value <
0.05 was considered statistically significant. Colors represent cell types within each age group. Dots
represent number of significant interactions for each cell type pair in each specimen. Values
represent mean + s.e.m. (n = 28 specimens).
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Supplementary Fig. 6 | Expression of risk genes for neurological disorders in human imGCs
and mGCs across the lifespan. Red-blue heatmaps depict expression patterns of the risk genes of

neurological or psychiatric disorders in the human imGCs and mGCs across the lifespan.
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